66 research outputs found

    Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism

    Get PDF
    Deep-Earth volatile cycles couple the mantle with near-surface reservoirs. Volatiles are emitted by volcanism and, in particular, from mid-ocean ridges, which are the most prolific source of basaltic volcanism. Estimates of volatile extraction from the asthenosphere beneath ridges typically rely on measurements of undegassed lavas combined with simple petrogenetic models of the mean degree of melting. Estimated volatile fluxes have large uncertainties; this is partly due to a poor understanding of how volatiles are transported by magma in the asthenosphere. Here, we assess the fate of mantle volatiles through numerical simulations of melting and melt transport at mid-ocean ridges. Our simulations are based on two-phase, magma/mantle dynamics theory coupled to idealised thermodynamic model of mantle melting in the presence of water and carbon dioxide. We combine simulation results with catalogued observations of all ridge segments to estimate a range of likely volatile output from the global mid-ocean ridge system. We thus predict global MOR crust production of 66-73 Gt/yr (22-24 km3/yr) and global volatile output of 52-110 Mt/yr, corresponding to mantle volatile contents of 100--200~ppm. We find that volatile extraction is limited: up to half of deep, volatile-rich melt is not focused to the axis but is rather deposited along the LAB. As these distal melts crystallise and fractionate, they metasomatise the base of the lithosphere, creating rheological heterogeneity that could contribute to the seismic signature of the LAB.Comment: 42 pages; 8 figures; 2 appendices (incl 1 table); 7 suppl. figures; 1 suppl. tabl

    Anhydrous Partial Melting Experiments on MORB-like Eclogite: Phase Relations, Phase Compositions and Mineral-Melt Partitioning of Major Elements at 2-3 GPa

    Get PDF
    We present melt and mineral compositions from nominally anhydrous partial melting experiments at 2-3 GPa on a quartz eclogite composition (G2) similar to average oceanic crust. Near-solidus partial melts at 3 GPa, determined with melt traps of vitreous carbon spheres, have 55-57 wt % SiO2, rather less silica than the dacitic compositions that are generally assumed for near-solidus eclogite partial melts. At 2 GPa, equivalent near-solidus partial melts are less silicic (≤52 wt % SiO2). The 3 GPa near-solidus partial melts (up to melt fractions of ∼3%) are saturated in rutile and have 5·7-6·7 wt % TiO2. The G2 composition is K2O-poor (0·03 wt %), but a modified composition with 0·26 wt % K2O (G2K) produces dacitic near-solidus melts with 61-64 wt % SiO2. Rutile saturation for G2K extends to higher melt fraction (∼13%) and occurs at lower TiO2 melt contents (3·3 wt %) than for G2. These results can be understood in terms of a simplified thermodynamic model in which alkalis increase the SiO2 content of liquids saturated in quartz, which in turn diminishes the TiO2 concentrations required to maintain rutile saturation. Additionally, the mode of residual garnet and generation of silicic liquids by partial melting of anhydrous eclogite are linked, as garnet is required to mass-balance formation of appreciable SiO2-rich melt. Partitioning of Na between clinopyroxene and melt shows significant increases with pressure, but only modest shifts with changing temperature. In contrast, partitioning of Ti between cpx and melt, as well as between cpx and garnet, shows pronounced dependence on temperature for compositions relevant to anhydrous partial melting of eclogite. Mixtures between partial melts of eclogite and primitive picritic Hawaiian magmas are similar to magnesian, SiO2-rich compositions inferred from melt inclusions from the Koolau volcano. However, in detail, no eclogitic partial melt has been identified that is capable of explaining all of the compositional features of the exotic Koolau component. Based on phase compositions in our experiments, the calculated density of near-solidus eclogite is 3440 kg/m3, notably less than commonly assumed. Therefore, the excess temperature required for a plume to support a given proportion of eclogite in the upper mantle may be less than previously assume

    Tracing the Ingredients for a Habitable Earth from Interstellar Space through Planet Formation

    Get PDF
    We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites and terrestrial planets; we include an updated estimate for the Bulk Silicate Earth (C/N = 49.0 +/- 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macro-molecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ~1-12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonaceous chondrites or comets. During planetary formation, we explore scenarios leading to further volatile loss and associated C/N variations owing to core formation and atmospheric escape. Key processes include relative enrichment of nitrogen in the atmosphere and preferential sequestration of carbon by the core. The high C/N BSE ratio therefore is best satisfied by accretion of thermally processed objects followed by large-scale atmospheric loss. These two effects must be more profound if volatile sequestration in the core is effective. The stochastic nature of these processes hints that the surface/atmospheric abundances of biosphere-essential materials will likely be variable.Comment: Accepted by PNAS per http://www.pnas.org/content/early/2015/07/01/1500954112.abstract?sid=9fd8abea-9d33-46d8-b755-217d10b1c24

    Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus locations and melting rate,

    Get PDF
    [1] We present partial melting experiments at 2-3 GPa on a basaltic pyroxenite (G2) similar in composition to typical oceanic crust. The 3.0 GPa solidus is located at 1310 ± 12°C and the liquidus is 1500-1525°C. Clinopyroxene, garnet, quartz, and rutile are subsolidus phases. Garnet, quartz, and rutile are absent above 1475°C, 1365°C, and 1335°C, respectively. At the solidus, the garnet mode is low (18 wt.%) because clinopyroxene is unusually aluminous (13.8-15.5 wt.% Al 2 O 3 ). In adiabatically upwelling mantle near 2-3 GPa, G2-like pyroxenite begins melting 35-50 km deeper than peridotite. The calculated near-solidus adiabatic productivity for G2 is 1313%/GPa and averages 59%/GPa through the melting interval, suggesting substantial partial melting deep in basalt source regions: G2 is 6060% molten at the 3 GPa peridotite solidus. Small percentages of pyroxenite in the source significantly affect oceanic crust production and composition, as the proportion of pyroxenite-derived melt contributed to oceanic crust formation is 5 to >10 times the pyroxenite proportion in the source. Given the overall depleted isotopic character of mid-ocean ridge basalt (MORB), oversampling of fertile G2-like pyroxenite limits the abundance of such lithologies to <2% of the MORB source. Owing to high extents of partial melting, the effect of modest amounts of pyroxenite on Sm/Yb ratios of aggregated basalts is limited and depends largely on the average bulk composition of the pyroxenite source. Low near-solidus adiabatic productivities could allow small ($1-2%) proportions of basaltic pyroxenite to enhance

    Determination of Fe\u3csup\u3e3+\u3c/sup\u3e/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB

    Get PDF
    To improve the accuracy of X-ray absorption near-edge structure (XANES) calibrations for the Fe3 +/ΣFe ratio in basaltic glasses, we reevaluated the Fe3 +/ΣFe ratios of glasses used as standards by Cottrell et al. (2009), and available to the community (NMNH catalog #117393). Here we take into account the effect of recoilless fraction on the apparent Fe3 +/ΣFe ratio measured from room temperature Mössbauer spectra in that original study. Recoilless fractions were determined from Mössbauer spectra collected from 40 to 320 K for one basaltic glass, AII_25, and from spectra acquired at 10 K for the 13 basaltic glass standards from the study of Cottrell et al. (2009). The recoilless fractions, f, of Fe2 + and Fe3 + in glass AII_25 were calculated from variable-temperature Mössbauer spectra by a relative method (RM), based on the temperature dependence of the absorption area ratios of Fe3 + and Fe2 + paramagnetic doublets. The resulting correction factor applicable to room temperature determinations (C293, the ratio of recoilless fractions for Fe3 + and Fe2 +) is 1.125 ± 0.068 (2σ). Comparison of the spectra at 10 K for the 13 basaltic glasses with those from 293 K suggests C293 equal to 1.105 ± 0.015 (2σ). Although the 10 K estimate is more precise, the relative method determination is believed to be more accurate, as it does not depend on the assumption that recoilless fractions are equal at 10 K. Applying the effects of recoilless fraction to the relationship between Mössbauer-determined Fe3 +/ΣFe ratios and revised average XANES pre-edge centroids for the 13 standard glasses allows regression of a new calibration of the relationship between the Fe XANES pre-edge centroid energy and the Fe3 +/ΣFe ratio of silicate glass. We also update the calibration of Zhang et al. (2016) for andesites and present a more general calibration for mafic glasses including both basaltic and andesitic compositions. Recalculation of Fe3 +/ΣFe ratios for the mid-ocean ridge basalt (MORB) glasses analyzed previously by XANES by Cottrell and Kelley (2011) results in an average Fe3 +/ΣFe ratio for MORB of 0.143 ± 0.008 (1σ), taking into account only analytical precision, and 0.14 ± 0.01(1σ), taking into account uncertainty on the value of C293. This revised average is lower than the average of 0.16 ± 0.01 given by Cottrell and Kelley (2011). The revised average oxygen fugacity for MORB based on the database of Cottrell and Kelley (2011) is − 0.18 ± 0.16 log units less than the quartz-fayalite-magnetite buffer of Frost (1991) at 100 kPa (∆ QFM = − 0.18 ± 0.16)
    • …
    corecore